Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
Gene ; 697: 213-226, 2019 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-30772522

RESUMO

Strabismus refers to the misalignment of the eyes and occurs in 2-4% of individuals. The low-resolution label "strabismus" covers a range of heterogeneous defects, which makes it challenging to unravel this condition. Consequently a coherent understanding of the causes is lacking. Here, we attempt to gain a better understanding of the underlying genetics by combining gene curation, diverse bioinformatic analyses (including gene ontology, pathway mapping, expression and network-based methods) and literature review. Through a phenotype-based curation process, we identify high-confidence and permissive sets of 54 and 233 genes potentially involved in strabismus. These genes can be grouped into 10 modules that together span a heterogeneous set of biological and molecular functions, and can be linked to clinical sub-phenotypes. Multiple lines of evidence associate retina and cerebellum biology with the strabismus genes. We further highlight a potential role of the Ras-MAPK pathway. Independently, sets of 11 genes and 15 loci tied to strabismus with definitive genetic basis have been compiled from the literature. We identify strabismus candidate genes for 5 of the 15 reported loci (CHD7; SLC9A6; COL18A1, COL6A2; FRY, BRCA2, SPG20; PARK2). Finally, we synthesize a Strabismus Candidate Gene Collection, which together with our curated gene sets will serve as a resource for future research. The results of this informatics study support the heterogeneity and complexity of strabismus and point to specific biological pathways and brain regions for future focus.


Assuntos
Estrabismo/genética , Biologia Computacional/métodos , Curadoria de Dados/métodos , Ontologia Genética , Redes Reguladoras de Genes/genética , Genes ras/genética , Humanos , Sistema de Sinalização das MAP Quinases/genética , Transdução de Sinais/genética , Estrabismo/fisiopatologia , Transcriptoma/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/fisiologia
3.
Nucleic Acids Res ; 45(18): 10634-10648, 2017 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-28977405

RESUMO

Hotspots of rapid genome evolution hold clues about human adaptation. We present a comparative analysis of nine whole-genome sequenced primates to identify high-confidence targets of positive selection. We find strong statistical evidence for positive selection in 331 protein-coding genes (3%), pinpointing 934 adaptively evolving codons (0.014%). Our new procedure is stringent and reveals substantial artefacts (20% of initial predictions) that have inflated previous estimates. The final 331 positively selected genes (PSG) are strongly enriched for innate and adaptive immunity, secreted and cell membrane proteins (e.g. pattern recognition, complement, cytokines, immune receptors, MHC, Siglecs). We also find evidence for positive selection in reproduction and chromosome segregation (e.g. centromere-associated CENPO, CENPT), apolipoproteins, smell/taste receptors and mitochondrial proteins. Focusing on the virus-host interaction, we retrieve most evolutionary conflicts known to influence antiviral activity (e.g. TRIM5, MAVS, SAMHD1, tetherin) and predict 70 novel cases through integration with virus-human interaction data. Protein structure analysis further identifies positive selection in the interaction interfaces between viruses and their cellular receptors (CD4-HIV; CD46-measles, adenoviruses; CD55-picornaviruses). Finally, primate PSG consistently show high sequence variation in human exomes, suggesting ongoing evolution. Our curated dataset of positive selection is a rich source for studying the genetics underlying human (antiviral) phenotypes. Procedures and data are available at https://github.com/robinvanderlee/positive-selection.


Assuntos
Evolução Molecular , Seleção Genética , Animais , Artefatos , Conversão Gênica , Variação Genética , Genômica , Interações Hospedeiro-Patógeno/genética , Humanos , Imunidade/genética , Família Multigênica , Primatas/genética , Proteínas/genética , Receptores Virais/química , Proteínas Virais/química , Viroses/genética
4.
Nat Cell Biol ; 18(1): 122-31, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26595381

RESUMO

The transition zone (TZ) ciliary subcompartment is thought to control cilium composition and signalling by facilitating a protein diffusion barrier at the ciliary base. TZ defects cause ciliopathies such as Meckel-Gruber syndrome (MKS), nephronophthisis (NPHP) and Joubert syndrome (JBTS). However, the molecular composition and mechanisms underpinning TZ organization and barrier regulation are poorly understood. To uncover candidate TZ genes, we employed bioinformatics (coexpression and co-evolution) and identified TMEM107 as a TZ protein mutated in oral-facial-digital syndrome and JBTS patients. Mechanistic studies in Caenorhabditis elegans showed that TMEM-107 controls ciliary composition and functions redundantly with NPHP-4 to regulate cilium integrity, TZ docking and assembly of membrane to microtubule Y-link connectors. Furthermore, nematode TMEM-107 occupies an intermediate layer of the TZ-localized MKS module by organizing recruitment of the ciliopathy proteins MKS-1, TMEM-231 (JBTS20) and JBTS-14 (TMEM237). Finally, MKS module membrane proteins are immobile and super-resolution microscopy in worms and mammalian cells reveals periodic localizations within the TZ. This work expands the MKS module of ciliopathy-causing TZ proteins associated with diffusion barrier formation and provides insight into TZ subdomain architecture.


Assuntos
Cerebelo/anormalidades , Cílios/metabolismo , Proteínas de Membrana/metabolismo , Retina/anormalidades , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/metabolismo , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Cerebelo/metabolismo , Anormalidades do Olho/genética , Anormalidades do Olho/metabolismo , Humanos , Doenças Renais Císticas/genética , Doenças Renais Císticas/metabolismo , Proteínas de Membrana/genética , Retina/metabolismo
5.
PLoS Comput Biol ; 11(10): e1004553, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26485378

RESUMO

The RIG-I-like receptor (RLR) pathway is essential for detecting cytosolic viral RNA to trigger the production of type I interferons (IFNα/ß) that initiate an innate antiviral response. Through systematic assessment of a wide variety of genomics data, we discovered 10 molecular signatures of known RLR pathway components that collectively predict novel members. We demonstrate that RLR pathway genes, among others, tend to evolve rapidly, interact with viral proteins, contain a limited set of protein domains, are regulated by specific transcription factors, and form a tightly connected interaction network. Using a Bayesian approach to integrate these signatures, we propose likely novel RLR regulators. RNAi knockdown experiments revealed a high prediction accuracy, identifying 94 genes among 187 candidates tested (~50%) that affected viral RNA-induced production of IFNß. The discovered antiviral regulators may participate in a wide range of processes that highlight the complexity of antiviral defense (e.g. MAP3K11, CDK11B, PSMA3, TRIM14, HSPA9B, CDC37, NUP98, G3BP1), and include uncharacterized factors (DDX17, C6orf58, C16orf57, PKN2, SNW1). Our validated RLR pathway list (http://rlr.cmbi.umcn.nl/), obtained using a combination of integrative genomics and experiments, is a new resource for innate antiviral immunity research.


Assuntos
Citocinas/imunologia , RNA Helicases DEAD-box/imunologia , Imunidade Inata/imunologia , RNA Viral/imunologia , Integração Viral/imunologia , Vírus/imunologia , Citocinas/genética , Proteína DEAD-box 58 , Perfilação da Expressão Gênica/métodos , Regulação Viral da Expressão Gênica/genética , Regulação Viral da Expressão Gênica/imunologia , Genômica/métodos , RNA Viral/genética , Receptores Imunológicos , Integração de Sistemas , Integração Viral/genética , Vírus/genética
6.
Eur J Clin Microbiol Infect Dis ; 34(5): 963-974, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25579795

RESUMO

The induction of host defense against Candida species is initiated by recognition of the fungi by pattern recognition receptors and activation of downstream pathways that produce inflammatory mediators essential for infection clearance. In this study, we present complementary evidence based on transcriptome analysis, genetics, and immunological studies in knockout mice and humans that the cytosolic RIG-I-like receptor MDA5 (IFIH1) has an important role in the host defense against C. albicans. Firstly, IFIH1 expression in macrophages is specifically induced by invasive C. albicans hyphae, and patients suffering from chronic mucocutaneous candidiasis (CMC) express lower levels of MDA5 than healthy controls. Secondly, there is a strong association between missense variants in the IFIH1 gene (rs1990760 and rs3747517) and susceptibility to systemic Candida infections. Thirdly, cells from Mda5 knockout mice and human peripheral blood mononuclear cells (PBMCs) with different IFIH1 genotypes display an altered cytokine response to C. albicans. These data strongly suggest that MDA5 is involved in immune responses to Candida infection. As a receptor for viral RNA, MDA5 until now has been linked to antiviral host defense, but these novel studies show unexpected effects in antifungal immunity as well. Future studies are warranted to explore the potential of MDA5 as a novel target for immunotherapeutic strategies.


Assuntos
Candida/imunologia , Candidemia/imunologia , RNA Helicases DEAD-box/metabolismo , Adulto , Animais , Células Cultivadas , Estudos de Coortes , RNA Helicases DEAD-box/deficiência , Suscetibilidade a Doenças , Humanos , Helicase IFIH1 Induzida por Interferon , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/microbiologia , Camundongos Knockout , Polimorfismo de Nucleotídeo Único
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA